Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer

Fang Ren1,21, Bingyao Liu3,4,5,6†, Zhaolong Chen4,6, Yue Yin1,2, Jingyu Sun6,7, Shuo Zhang1,2, Bei Jiang4, Bingzhi Liu4,6,7, Zhetong Liu3,4,5,6, Jianwei Wang8, Meng Liang1,2, Guodong Yuan9,2, Jianchang Yan3,2, Tongbo Wei1,2, Xiaoyan Yi1,2, Junxi Wang1,2, Yong Zhang10, Jinmin Li1,2, Peng Gao3,4,5,11*, Zhongfan Liu4,6*, Zhiqiang Liu1,2†

Van der Waals epitaxy provides a fertile playground for the monolithic integration of various materials for advanced electronics and optoelectronics. Here, a previously unidentified nanorod-assisted van der Waals epitaxy is developed and nearly single-crystalline GaN films are first grown on amorphous silica glass substrates using a graphene interfacial layer. The epitaxial GaN-based light-emitting diode structures, with a record internal quantum efficiency, can be readily lifted off, becoming large-size flexible devices. Without the effects of the potential field from a single-crystalline substrate, we expect this approach to be equally applicable for high-quality growth of nitrides on arbitrary substrates. Our work provides a revolutionary technology for the growth of high-quality semiconductors, thus enabling the hetero-integration of highly mismatched material systems.

INTRODUCTION

Semiconductor van der Waals epitaxy (vdWE) has the potential to revolutionize future electronics and photonics by providing a novel material integration method (1–4). Substantial processes have been reported on the epitaxy of semiconductors on graphene (Gr)–covered single-crystalline substrates, such as sapphire (5–10), silicon (11–14), and SiC (15–18). However, in principle, this growth mechanism is remote heteroepitaxy (19), in which the epitaxy layer still inherits the crystallinity from the single-crystalline substrate, with strong substrate selectivity. The growth of nitrides on amorphous substrates such as transparent and large-scale glass, by contrast, is an ideal platform to explore semiconductor vdWE on arbitrary substrates, which is prospective to realize large-scale flexible electronics (20). Furthermore, it would broaden the concept of semiconductor heteroepitaxy and provide a simplified pathway for the hetero-integration of various semiconductors for advanced electronics and photonics.

However, such a growth method is still challenging owing to the lack of epitaxial interactions between the amorphous substrates and materials to be deposited. Until now, no successful research activity has been explored in high-quality nitride films on amorphous substrates. Various new buffer layer strategies have been considered to guide the lattice arrangement of nitride nucleation on amorphous substrates. For example, Ti interlayer was used for the growth of GaN pyramids (21–23). Besides, several efforts have been made on Gr-buffered nitride growth on amorphous substrates, such as GaN/AIGaN nanocolumns on amorphous glass substrates (24, 25) and InGaN-based light-emitting diodes (LEDs) on amorphous SiO2 substrates (26). However, these earlier attempts have not achieved a flat coalescence crystalline layer mainly due to the lack of controlled in-plane orientation.

In this work, we report the growth of GaN films on amorphous silica glass substrates by using nanorod-assisted vdWE, which shows much improved quality compared with previous results (21, 27–30). The as-obtained GaN films exhibit the nearly single-crystalline characteristic; i.e., it has a single out-of-plane orientation and three in-plane orientations. The blue LED fabricated on such a GaN film shows a record internal quantum efficiency (IQE) of 48.67%. Furthermore, a flexible inorganic light-emitting device is demonstrated benefiting from the weak interfacial interaction. This work not only experimentally validates the growth of crystalline nitrides on amorphous substrates but also provides a promising route to the monolithic integration of semiconductors for advanced electronics and photonics.

RESULTS AND DISCUSSION

The nanorod-assisted vdWE method is proposed as schematically shown in Fig. 1 (A to F). First, we use Gr to realize aligned nitride nucleation islands, which inherit the crystallinity from the Gr lattice. At the second step, nitride nucleation islands absorb adatoms on the Gr surface and evolve into nanorods with aligned c-axis orientation and optimized in-plane orientations, which act as a good template for thermal mismatch alleviation and subsequent coalescence, aiming to the formation of a smooth nitride film.

Scanning electron microscopy (SEM) image and Raman characterization of Gr transferred on glass show that the Gr is uniform and continuous (fig. S1A and S2). Raman spectra and Raman mappings of Gr before and after metal organic chemical vapor
deposition (MOCVD) growth show the existence of Gr and compressive strain in Gr after GaN growth (fig. S1B and S3). The SEM image in Fig. 1G shows that the c-axis–oriented nanorods are vertically aligned with good uniformity in height and diameter. The inset of Fig. 1G is a high-magnification SEM image of hexagonal-shaped nanorods, in which there are three in-plane orientations with relative rotation angles of approximately 0°, 10°, and 30° about the c axis (labeled by red, green, and blue lines, respectively). It will be discussed in detail below. After coalescence, the GaN film exhibits a continuous and flat surface (Fig. 1H and fig. S4A). As a comparison, GaN layer directly grown on the bare glass substrate, by either nanorod template or conventional low-temperature (LT) buffer method, exhibits a rough polycrystalline surface morphology consisting of random c-axis orientations (fig. S5, A and B). The detailed description of the control experiments is shown in Materials and Methods. On Gr-covered glass, although the c-axis alignment remains, the in-plane orientations are numerous because of the conventional LT buffer method (fig. S5C), hindering the formation of a continuous film. In contrast, only three dominant in-plane orientations exist by introducing the nanorod template on Gr/glass (the inset of Fig. 1G). Therefore, it is reasonable to conclude that a Gr buffer layer can well guide the lattice arrangement at the nitride/Gr heterointerface, especially in the c-axis direction. Significantly, the designed nanorod template further restricts the in-plane alignment to only three dominant configurations. In this case, Ga or Al adatoms at the Gr surface tend to diffuse and incorporate into nitride nanorods through lateral surface migration (fig. S6), which is energetically favorable due to the low diffusion barrier (31). Otherwise, excess nucleation with random orientations will form at the typical supersaturation growth condition. The cross-sectional SEM image of GaN films is further measured to demonstrate the full growth process of GaN films (the inset of Fig. 1H). The planar GaN films have an average thickness of about 1.1 μm atop the GaN nanorods with a uniform height of about 400 nm. At the interface between the nanorods and planar film, the top of nanorods shows an inverted pyramid shape, formed during the epitaxial lateral overgrowth (ELOG) process, shown in the inset of Fig. 1H labeled by orange dotted lines.

X-ray diffraction (XRD) peaks are observed only at 34.6° and 72.9°, corresponding to the (0002) and (0004) orientations of wurtzite GaN, respectively, indicating that GaN films have a consistent out-of-plane orientation (Fig. 1I). The x-ray rocking curve full width at half maximum (FWHM) of the (0002) peak is 1.2° (the inset of Fig. 1I). Raman spectrum of GaN films exhibits a slight red shift of E2 (high) peak with respect to stress-free bulk GaN, showing that...
small tensile stress exists in as-grown GaN films (fig. S4B). The SEM, XRD, and Raman results suggest that the Gr and vertically aligned GaN nanorod template play critical roles in modulating the lattice arrangement at the nitride/Gr interface.

Although plenty of work on vdWE have been realized, understanding of kinetic mechanism and atomic structure at the nitride/Gr interface and interpretations of variational in-plane orientations have not reached a consensus (32–36). Here, to study the interfacial properties and further identify structural models of GaN/pristine-Gr, we perform first-principles calculations based on density functional theory (DFT) using the van der Waals density functional (DF) optB86b (37). According to the periodicity of the hexagonal lattice, there are six kinds of possible lattice configurations for GaN and Gr, with in-plane rotation angles of 0°, 30°, 19.1°, 13.9°, 10.9°, and 23.4° (fig. S7). For the heteroepitaxy of GaN on Gr, lattice mismatch needs to be considered, resulting in the following possible epitaxial relationships of GaN/Gr: grain 1, GaN 0°//Gr 0°; grain 2, GaN 10.9°//Gr 0°; grain 3, GaN 0°//Gr 30°; grain 4, GaN 19.1°//Gr 30°; grain 5, GaN 13.9°//Gr 10.9°; grain 6, GaN 30°//Gr 10.9°; and grain 7, GaN 0°//Gr 19.1° (table. S1). With the variation of the distance at the interface between GaN and Gr, the formation energy of each alignment changes as a quadratic function (Fig. 2B). According to the Minimum Energy Principle, the most preferred grains for GaN are grain 2, grain 1, and grain 3 in the order mentioned. Specifically, the corresponding lattice configurations are GaN 10.9°//Gr 0°, GaN 0°//Gr 0°, and GaN 0°//Gr 30°, with in-plane rotation angles of 10.9°, 0°, and 30°, respectively. Moreover, the difference charge density at the heterointerface (Fig. 2A) represents a vdWE binding feature without electron orbital hybridization. The calculated binding energy of the GaN/Gr heterointerface varies from 34 to 56 meV per atom, which is a typical vdWE binding energy and similar to that of the Gr/InAs interface (34).

High-resolution transmission electron microscopy (HRTEM) is further used to examine the in-plane orientations of GaN grown on Gr/glass. Figure 2 (C and D) shows the grain boundaries between grain 1 and grain 2, as well as grain 1 and grain 3. Their relative misorientation angles are measured to be 10° and 29°, respectively, by the corresponding fast Fourier transform (FFT) images in the inset of Fig. 2 (C and D). In addition, the HRTEM images from each grain and the corresponding FFT images show well-ordered hexagonal atomic arrangements of wurtzite GaN with rotation angles of 0°, 10°, and 29° (Fig. 2E), which matches well with the DFT calculation.
results shown in Fig. 2B. Moreover, clear Moiré patterns are observed in both grain boundaries because of the overlap of two adjacent grains (Fig. 2, F and G, left). The right images in Fig. 2 (F and G) show the structural representations of the Moiré patterns formed by two layers of GaN with relative rotation angles of 10° and 29°, respectively, which agree well with the HRTEM images. The electron backscatter diffraction (EBSD) inverse pole figure (IPF) images and XRD ϕ scan also lead to the same conclusion (fig. S8).

We further grow the blue LED structure to verify the optical properties of GaN films grown on Gr/glass. Figure 3A shows the schematic diagram of the blue LED structure grown on coalesced GaN films with five pairs of In$_{x}$Ga$_{1-x}$N/GaN multiple quantum wells (MQWs) and a p-GaN layer. From the XRD 2θ-ω scan of In$_{x}$Ga$_{1-x}$N/GaN MQWs and the p-GaN layer are on top of bridging nanorods grown on a Gr/glass substrate. Figure 3C shows the HRTEM image of the nitrides/Gr/grass interface. The Gr layer is continuous and can be observed between the nucleation layer and the glass substrate, which is indicated by yellow dotted lines. In addition, a thin C element layer is observed in energy dispersive spectroscopy (EDS) mapping of Si, C, and Ga elements at the interface of nitrides/Gr/glass, verifying the existence of Gr (fig. S9). We further used Z-contrast high-angle annular dark-field (HAADF) scanning TEM (STEM) image (Fig. 3E) to show the five pairs of MQWs, in which the GaN barriers and In$_{x}$Ga$_{1-x}$N wells show different contrasts, dark and bright, respectively. The corresponding EDS mapping of In element indicates the uniform distribution in each layer of In$_{x}$Ga$_{1-x}$N wells (Fig. 3F).

The optical characteristics of the blue LED are investigated by photoluminescence (PL). The photograph in Fig. 4A shows strong blue PL emission at room temperature. The room temperature PL spectrum in Fig. 4D shows a main peak at 477 nm, corresponding to the emission from the In$_{x}$Ga$_{1-x}$N/GaN MQWs active region, and a minor peak at 365 nm related to the near-band-edge emission of GaN. Furthermore, the temperature dependence of the PL spectra from 5 to 300 K is measured to estimate the IQE of the blue LED (Fig. 4E). There is no obvious yellow luminescence band or other defect-related emissions in spectra even at low temperature (5 K), indicating the high quality and low defect density of GaN and InGaN films. Figure 4F shows the integrated PL intensity as a function of the reciprocal of temperature. The ratio of the integrated PL intensity at 300 to 5 K is 48.67%, which is commonly defined as the IQE assuming that the IQE at 5 K is equal to 100% (38, 39).

The use of Gr makes it possible for the nondestructive release of epitaxial layers from brittle substrates, which is crucial for the fabrication of flexible devices (40–44). We successfully transfer the GaN-based blue LED epilayer from the glass substrate onto a conducting polymer (Fig. 4B). The flexible device emits a blue electroluminescence (EL) emission (Fig. 4C and fig. S10).

In summary, we provide a strategy for the vdWE of nitrides on amorphous substrates. Gr plus nitride nanorod buffer layer is adopted to control the orientation alignment during the MOCVD process. The obtained GaN films exhibit a nearly single-crystalline characteristic with a well-controlled lattice arrangement in both in-plane and out-of-plane orientations. The in-plane orientation and interface atomic configurations are theoretically analyzed by DFT calculations and experimentally confirmed by plan-view HRTEM and EBSD measurements. The fabricated blue LED with In$_{x}$Ga$_{1-x}$N/GaN MQWs shows a record IQE (48.67%) for nitride MQW LEDs on amorphous substrates. Last, a flexible inorganic light-emitting device is demonstrated. Our work offers a practical approach to nitride semiconductor vdWE and opens a new dimension for flexible...
integration of diverse material systems for future electronics and photonics.

MATERIALS AND METHODS
Transfer of Gr
The Gr transferred on amorphous glass was grown on copper foil by the CVD method. During the transfer process, poly(methylmethacrylate) (PMMA) was used as a handle to reduce breakage or wrinkles on Gr. We first spin cast PMMA onto the Gr copper foil that was afterward heated at 120°C for 3 min to dry the PMMA. Then, the copper foil was etched away by 20% FeCl₃ solution and the PMMA/Gr film could float on the liquid surface owing to the surface tension. After washing by deionized water, the Gr was picked up by the amorphous glass and baked under an infrared lamp for 10 min to remove the liquid and make the Gr stick tightly on the glass. Last, the PMMA handler was dissolved in acetone.

Growth of nanorods on Gr/glass
Throughout the growth process, we adopted trimethylgallium (TMGa), trimethylaluminum (TMAI), and ammonia (NH₃) as precursors, and hydrogen (H₂) as the carrier gas. Before the growth of nanorods, NH₃ was introduced into the chamber of MOCVD (Aixtron, a close-coupled showerhead system) for the nitridation process with a flow of 7200 standard cubic centimeter per minute (sccm) for 150 s. Afterward, AlGaN nucleation islands were deposited for 60 s by introducing TMGa and TMAI with a flow of 50 and 162 sccm, respectively. AlGaN nanorods were subsequently grown by introducing TMGa and NH₃ with a flux of 172 and 90 sccm and decreasing TMAI flow to 54 sccm. All growth steps of nanorods were conducted at 66 mbar and 1280°C. The growth temperature in all processes refers to the set value.

ELOG and coalescence of nanorods
Following the growth of vertically aligned nanorods, the growth temperature was decreased to 1260°C, and the NH₃ flow was increased to 240 sccm to induce the ELOG of nanorods, while the TMAI flow was decreased to 35 sccm. Other growth conditions were kept constant. The ELOG process lasted for 1500 s to obtain a fully coalesced film.

Formation of flat n-GaN film
The growth temperature was increased to 1290°C, and the NH₃ flow was increased to 54,000 sccm for 3600 s. The TMAI source was closed and silane (SiH₄) was introduced as dopants to grow n-GaN film.

Control experiments
To investigate the role of Gr and nanorods in orientation regulation, we set up four control experiments. Sample 1 was GaN films grown on Gr-covered glass by the nanorod template. Sample 2 was GaN films directly grown on bare glass by the nanorod template. Sample 3 was GaN films directly grown on bare glass by the conventional LT method. Sample 4 was GaN films grown on Gr-covered glass by the conventional LT method. Sample 1 and sample 2 were grown under the same conditions as described above. Sample 3 and sample 4 were grown under the same conditions by the conventional LT method.

For the growth of sample 3 and sample 4, the AlGaN buffer layer was grown at 550°C for 75 s with a NH₃ flow of 56,000 sccm, a TMGa flow of 84 sccm, and a TMAI flow of 60 sccm. Then, the GaN layer was grown at 1080°C for 45 min with a NH₃ flow of 50,000 sccm and a TMGa flow of 388 sccm.

Growth of blue LED structure
The triethylgallium (TEGa), trimethylindium (TMIn), and NH₃ were adopted as precursors to grow InₓGa₁₋ₓN wells and GaN barriers.
Five periods of In$_x$Ga$_{1-x}$N/GaN MQWs with 4/15 nm were grown at 850°/940°C. Then, a 20-nm-thick layer of p-GaN layer was deposited at 930°C by introducing macrogene (Cp2Mg) as dopants.

Transfer of the epitaxial layer

Conducting polymer gel was spin-coated on the surface of the epitaxial layer grown on a 2-inch Gr/ glass substrate with a rotation speed of 1000 rpm for 1 min and baked on the hot plate at 130°C for 15 min. Then, the solidified conducting polymer with the epitaxial layer was mechanically exfoliated from the substrate using thermal release tape. Last, the thermal release tape was released at 120°C.

Characterization

The as-grown epitaxial layer was characterized by SEM (Hitachi, Tokyo, Japan; operated at 4.4 kV), atomic force microscopy (D3100, Veeco, New York, NY, USA), XRD (Bede D1, UK; operated at 40 kV, 35 mA), Raman microscopy (Horiba, Kyoto, Japan; 532-nm laser excitation), and TEM/STEM (JEM-F200, Japan; Tecnai F20, USA; Titan Cubed Themis G2 300, USA) equipped with an EDS detector. The blue LED was characterized by PL (Horiba, Kyoto, Japan; 325-nm He-Cd laser with a power of 100 mW and cooled by liquid helium).

First-principles calculations

The first-principles calculations within DFT were performed using the Vienna Ab initio Simulation Package. We adopted the projector augmented wave pseudopotential and the generalized gradient approximation of Perdew-Burke-Ernzerhof for the exchange-correlation functional. The cutoff energy was chosen to be 350 eV, and full structural optimization was performed until atomic forces were less than 0.02 eV/Å. The van der Waals interactions were modeled by the optB88 exchange functional. The interface systems were modeled using supercells containing four bilayers of nitrides and one layer of Gr. We fixed the top layer of GaN to keep the symmetry of the wurtzite structure. The vacuum region was chosen to be 10 Å.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/7/31/eabf5011/DC1

REFERENCES AND NOTES

Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer
Fang Ren, Bingyao Liu, Zhaolong Chen, Yue Yin, Jingyu Sun, Shuo Zhang, Bei Jiang, Bingzhi Liu, Zhetong Liu, Jianwei Wang, Meng Liang, Guodong Yuan, Jianchang Yan, Tongbo Wei, Xiaoyan Yi, Junxi Wang, Yong Zhang, Jinmin Li, Peng Gao, Zhongfan Liu and Zhiqiang Liu

Sci Adv 7 (31), eabf5011.
DOI: 10.1126/sciadv.abf5011