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Similar to protocol A, tracers with specific size are used. For 
different experiments, N8 mm = 135, N10 mm = 70, N12 mm = 40, 
N14 mm = 25, N16 mm = 17, N18 mm = 12, N20 mm = 9, N24 mm = 5, and 
N30 mm = 3 tracers are used, and they are deposited randomly inside 
background particles. After deposition, we take one CT scan after 
each shear cycle, and a total of 200 CT scans are taken for each 
tracer size.

In this protocol, in the bulk region where particles are at least 2d 
away from the boundary of the shear box, the displacements of all 
particles after one shear cycle are less than 1/2d, and therefore, all 
particles’ trajectories can be tracked. Close to shear box boundary, 
because particle convection speeds are substantially larger than 
those in the bulk region, their trajectories cannot be tracked.
Protocol C
Using protocol B, we can establish a strong correlation between the 
arch-induced up-down volume fraction  asymmetry around tracers 
and the local segregation speed, which suggests the importance of a 
void-filling mechanism for local segregation. However, the specific 
mechanism that void filling works in 3D to induce segregation 
needs to be clarified. In protocol C, a single-step shear experiment 
of one shear cycle is carried out in which we analyze the evolution 
of volume fraction, bridge structure, and local flow dynamics around 
the tracers within one shear cycle to demonstrate how the existence 
of arches can lead to local segregation. To monitor the structure 
evolution and dynamics within one shear cycle, we divide one shear 
cycle into 160 shear steps and take a CT scan after each shear step. 
We deposit one 30-mm tracer particle initially in the middle of the 
xy plane at the bottom of the shear box. Then, we apply a 50 cycles’ 
shear to prepare the system and also through which to move the 
tracer particle to a height of around 10d from the bottom. Sub-
sequently, we carry out single-step shear experiment for 30 consec-
utive shear cycles. In this protocol, owing to the small shear step, the 
displacements of all particles are less than 1/3d and all particles can 
be tracked.

Identification of the bridge structure
We follow standard procedures to identify bridge structures in our 
system (40). To identify bridges, the contacts between particles have 
to be determined first because bridges are, by definition, collective 
structures where neighboring grains mechanically support each 
other through contacts. Two particles that are in real contacts 
should, in principle, have zero surface to surface distance. However, 
they can be misidentified as either penetrating into or having a gap 
from each other (see fig. S1A) because of experimental uncertainties 
resulting from, e.g., finite x-ray spatial resolution, particle asphericity, 
and artifacts of image processing procedures. We follow standard 
procedures to tackle this problem and determine the particle con-
tacts in our system by complementary error function fitting proce-
dure (see fig. S1B) (41). Once the contact network is identified, the 
next critical step is the identification of the force-bearing neighbors 
among all contact ones, from which the bridges can be determined: 
A mechanically stable particle under gravity is generally considered 
to be supported by a base of three contact neighbors, with the re-
quirement that the projection of the particle’s COM falls within the 
triangle formed by three base particles. As there exist many possible 
combinations of three particles satisfying the support-base require-
ments above, we identify the effective base by using the standard 
“lowest center of mass” method, which chooses the support base as 
the one having the lowest average centroid among all possible bases 

(40). The particles in the base that are mutually supportive for each 
other form the bridge structure. Our identification of arch or 
force-bearing structures using the bridge concept is consistent with 
our experimental observations of local segregation process, which 
justifies above analysis.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/8/eabe8737/DC1
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