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I.  Extraction of Normal and Pairing Self-Energies from ARPES in 

the Superconducting State 

 

For the physics of the ARPES process, we refer to excellent reviews 4,5. ARPES measures, for a 

given flux of photons of energy 𝜈 incident on a sample, the intensity of photo-electrons of 

kinetic energy 𝐸𝑘𝑖𝑛 and chosen angles at the detector with respect to the crystalline axes. Using 

the energy and momentum conservation laws, the kinetic energy and the angles can be converted 

into the energy 𝜔 and the crystal momentum 𝐤 of the one-particle state of the sample before 

the photo-excitation. For the purposes of this work, it is necessary to measure the ARPES 

intensity 𝐼(𝐤, 𝜔) at different 𝐤 and 𝜔 of interest and temperature 𝑇 from just above 𝑇𝑐 to 

well below it, with an accuracy of better than about 2%. Fig. 1 and Fig. 2 for UD89 give an idea 

of the quality of the raw data. We show similar results for the OD82 sample in Fig. S1, which are 

of somewhat poorer quality than in Fig. 1, but quite adequate for extracting the self-energies to 

the accuracy necessary for our conclusions. 

 

In this section, we first cast 𝐼(𝐤, 𝜔) in a form suitable for our analysis in SI.1, and then explain 

the procedure of extracting the normal and pairing self-energies from the data in SI.2. The results 

obtained depend on the accuracy and consistency of the experimental data, which are checked. 

One encounters the issues of signal to noise in the data as well as systematic errors due to both 

variation of photon flux and the small movements of sample with respect to the source of 

photons and the detector as a function of temperature. One also needs to renormalize the 

momentum distribution curve (MDC) in the superconducting state such that any slight misfits in 

the normal state do not affect the superconducting state fits. In other words one should make sure 

that the pairing self-energy and accompanying deviation of the normal self-energy from above 

𝑇𝑐 are extracted only from the difference between the MDC data between below and above 𝑇𝑐 

for the same cut and 𝜔. We explain how we minimize and take into account the systematic 

errors and how to renormalize the superconducting state MDC data in SII. 

  



SI.1  The Single-Particle Spectral Function  

The ARPES intensity 𝐼(𝐤, 𝜔)  for unit-incident flux of photons is given, in the sudden 

approximation, by 

 

𝐼(𝐤, 𝜔) = |𝑀(𝐤, 𝜈)|2𝑓(𝜔)[𝐴(𝐤, 𝜔) + 𝐵(𝐤, 𝜔)]                                          (S1) 

 

𝑀(𝐤, 𝜈) is the matrix element of the photo-emission process, 𝑓(𝜔) the Fermi distribution 

function, and 𝐵(𝐤, 𝜔) is the background from the multiple scatterings of the photo-electrons, 

which in well done laser based ARPES is small and well characterized in MDC measurements as 

seen in Fig. 2. 𝐴(𝐤, 𝜔) is the single-particle spectral function given by the imaginary part of the 

retarded Green’s function. Our primary interest is to extract the normal self-energy Σ(𝐤, 𝜔) and 

the pairing self-energy 𝜙(𝐤, 𝜔) in terms of which the Green’s function is written.   

 

  

𝐴(𝐤, 𝜔) = −
1

𝜋
𝐼𝑚𝐺11(𝐤, 𝜔)                                                               (S2) 

  

𝐺̂(𝐤, 𝜔) =
𝑊(𝐤, 𝜔)𝜏0 + 𝑌(𝐤, 𝜔)𝜏3 + 𝜙(𝐤, 𝜔)𝜏1

𝑊2(𝐤, 𝜔) − 𝑌2(𝐤, 𝜔) − 𝜙2(𝐤, 𝜔)
                                        (S3) 

 

where the subscript in Eq. (S2) represents the 11 component of the matrix Green’s function 𝐺̂, 

and the 𝜏𝑖 (𝑖 = 0,1,2,3) are the Pauli matrices in the Nambu space. As verified in Fig. 2, the 

normal self-energy and pairing self-energy depend on 𝑘⊥ very weakly, and are functions of 𝜃 

and 𝜔. Then   

 

  

𝑊(𝜃, 𝜔) = 𝜔 − Σ0(𝜃, 𝜔) ≡ 𝜔𝑍(𝜃, 𝜔)                                     (S4) 

  

𝑌(𝐤, 𝜔) = 𝜉(𝐤) + Σ3(𝜃, 𝜔)                                                       (S5) 

 

𝜙(𝜃, 𝜔) = 𝑍(𝜃, 𝜔)Δ(𝜃, 𝜔)                                                         (S6) 



                        

The Σ3(𝜃, 𝜔) is in principle necessary because we need to consider self-energies over a large 

energy region from  the chemical potential, where 𝜉(𝐤) is not symmetric, and the impurity 

induced resonance10,11 in the superconducting state come from potentials which are in general 

not particle-hole symmetric. The normal self-energy Σ(𝜃, 𝜔) is given by   

 

  

Σ(𝜃, 𝜔) = Σ0(𝜃, 𝜔) + Σ3(𝜃, 𝜔)                                                   (S7) 

 

It evolves continuously to the normal state self-energy Σ(𝜃, 𝜔) above 𝑇𝑐 where the distinction 

between Σ0(𝜃, 𝜔) and Σ3(𝜃, 𝜔) can not be made in the fitting process. 

 

In this paper, we use the bare dispersion 𝜉(𝐤) given in Eqs. (3) and (11) in Ref. [25] with 6 

parameters determined from very detailed fits to the band-structure calculated by density 

functional methods. We have also used the 4 parameters given in Ref. [17]. Although the 

measured Fermi-surfaces with the two band-structures are identical, the detailed dispersions 

differ at higher energies. The differences in the results using the two different band-structures are 

discussed as a source of systematic errors in 𝐒𝐈𝐈. 

 

SI.2  Procedure for Extracting the Self-Energy 

 

The procedure we employ here is a combination of a refinement of the MDC fitting in Ref. [36] 

and a real frequency implementation of the MDC area ratio approach as proposed in Ref. [8]  

and [37]. The MDC self-energy analysis fits the ARPES intensity 𝐼(𝐤, 𝜔) of Eq. (S1) and (S2) 

for a fixed 𝜃 and 𝜔 with a chosen bare dispersion 𝜉(𝐤) as a function of 𝑘⊥ to extract the 

𝑘⊥ -independent normal self-energy Σ(𝜃, 𝜔)  and pairing self-energy 𝜙(𝜃, 𝜔) . The most 

important and unique feature of the MDC fitting is that one can determine the normal and pairing 

self-energies separately on an equal footing. One should notice the almost perfect MDC fittings 

shown in Figs. 2. This demonstrates the experimental justification of the 𝑘⊥-independence of the 

self-energy and the matrix element 𝑀(𝐤, 𝜈) of Eq. (S1). The 𝑘⊥-independence of 𝑀 comes in 



because the spectral function 𝐴 of Eq. (S1) has a much sharper quasi-particle peak as a function 

of 𝑘⊥ (at 𝑘⊥ = 𝑘𝑚(𝜔)) than 𝑀. The 𝑘⊥ dependence of 𝑀(𝑘⊥) then can be factored out and 

written as a function of 𝜔. 

 

Now, the MDC area ratio approach takes the ratio of MDC areas in the superconducting and 

normal states, 𝒜𝑆(𝜃, 𝜔)/𝒜𝑁(𝜃, 𝜔), and equates it with the superconducting density of states.   

  

𝑅𝑒𝑁(𝜃, 𝜔) =
𝒜𝑆(𝜃, 𝜔)

𝒜𝑁(𝜃, 𝜔)
= 𝑅𝑒 [

𝜔

√𝜔2 − Δ2(𝜃, 𝜔)
]                                   (S8) 

 

This relation holds for general energy dependent DOS as well provided that the bandwidth is the 

largest energy scale. A combination of the two methods successfully produces the normal 

self-energy Σ(𝜃, 𝜔) and pairing self-energy 𝜙(𝜃, 𝜔). 

 

The fitting of experimental MDC data 𝐼(𝑘⊥, 𝜃, 𝜔) using Eq. (S1) in the normal state returns the 

Σ(𝜃, 𝜔) straightforwardly. In the superconducting state, however, it is a subtle matter because 

the fitting parameter space is expanded and yet, the parameters (the self-energies) must be 

determined by the small difference of the MDCs between the superconducting and normal states. 

Therefore the fitting must be aided by other information to ensure the reliable results. This is 

provided by the MDC area ratio approach. 

 

The experimental results are taken along the trajectories shown in Fig. 2C, which are not straight 

lines in the (𝑘⊥, 𝜃)  plane, especially as the anti-nodal direction is approached. But the 

trajectories are known very well and one can convert from the points of measurement to (𝑘⊥, 𝜃). 

It turns out that the corrections are significant only in 𝑘⊥ compared to those in 𝜃. 

 

To calculate the area under the MDC, for the chosen 𝜃, and a wide distribution of energies, by 

integrating the experimental 𝐼(𝑘⊥, 𝜃, 𝜔)  over 𝑘⊥ , the background 𝐵(𝐤, 𝜔)  must first be 

subtracted. Over most of the energy range, 𝐵(𝐤, 𝜔) is independent of 𝑘⊥ to a very good 

approximation, as seen in Fig. 2, and therefore can be easily determined. At higher energies, 



above about 0.1 eV, it is weakly momentum dependent. The observed slight asymmetry of the 

MDC shape as a function of 𝑘⊥ may be accounted for by a deviation of the bare dispersion 

𝜉(𝐤) from the linear dispersion relation like the tight-binding dispersion or 𝑘⊥ dependent 

background. We took the tight-binding dispersion for 𝜉(𝐤) and 𝑘⊥-independent background, 

and proceed as follows. 

 

(1) The initial calculation of the 𝑅𝑒𝑁(𝜃, 𝜔) begins with the MDC fittings with 𝜙 = 0 for both 

𝐼𝑆(𝑘⊥, 𝜃, 𝜔) below 𝑇𝑐 and 𝐼𝑁(𝑘⊥, 𝜃, 𝜔) above 𝑇𝑐. This returns the backgrounds 𝐵𝑆(𝜃, 𝜔) and 

𝐵𝑁(𝜃, 𝜔) as well as the normal self-energies. Then the MDC areas were calculated both in the 

superconducting and normal states after the backgrounds were subtracted off and used to 

calculate the superconducting DOS from Eq. (S8). This requires that the matrix element 𝑀 of 

Eq. (S1) cancels out exactly in taking the ratio because the 𝑘⊥ integral of the 𝐴 gives the 

density of states. As discussed above, the matrix element 𝑀 can be factored out of the 𝑘⊥ 

integral of MDC area. Also, because 𝑀 is independent of the temperature, it is cancelled out in 

taking the ratio. 

 

(2) Take the Kramers-Kronig transform to obtain the imaginary part of 𝑁(𝜃, 𝜔). This gives a 

complete information on the complex function 𝑁(𝜃, 𝜔). The complex function Δ(𝜃, 𝜔) is 

obtained from the relation,   

 

 Δ(𝜃, 𝜔) = 𝜔 [1 −
1

𝑁2(𝜃,𝜔)
]

1

2
                                                         (S9) 

  

The self-energies 𝜙(𝜃, 𝜔) are obtained from   

 

 𝜙(𝜃, 𝜔) = Δ(𝜃, 𝜔)𝑍(𝜃, 𝜔)                                                           (S10) 

  

 𝑍(𝜃, 𝜔) = 1 −
Σ(𝜃,𝜔)

𝜔
                                                                    (S11) 

  

where Σ(𝜃, 𝜔) was already obtained as described in the step (1) above. 



(3) Now, go back to the step (1) to make the MDC fittings of 𝐼𝑆 and 𝐼𝑁, but allowing 𝜙 ≠ 0 

below 𝑇𝑐. The predetermined Σ and 𝜙 in the step (2) serve as a guide to the subtle MDC 

fitting in the superconducting state. This returns improved Σ and 𝜙 as well as the background 

𝐵. 

 

(4) Go back to the step (2) to recalculate the MDC area with the newly determined background 

𝐵. The resulting Σ and 𝜙 from Eq. (S10) and (S11) serve to make next iteration of MDC 

fittings. We iterate this process until the pairing self-energy from the MDC fitting and the MCD 

area ratio converge. 

 

The self-energies presented here were obtained by the iterative process of the MDC fitting and 

MDC area ratio approach just explained. 

 

A comment should be made here on the classic work of McMillan and Rowell1. They measured 

the ratio of the density of states in a tunneling conductance experiment on Pb as a function of 

energy in the superconducting state to that in the state just above 𝑇𝑐. This was used to obtain the 

gap function Δ(𝜔) from which they deduced the Eliashberg function ℰ𝑃, (called 𝛼2𝐹(𝜔) by 

them). This procedure works well for s-wave superconductors, where ℰ𝑃 = ℰ𝑁, but this is not 

suitable for d-wave superconductors because ℰ𝑃  is in general different from ℰ𝑁 . d-wave 

superconductivity requires two experimentally determined functions which may be determined 

from the coupled equations for the normal and the pairing self-energies to determine two distinct 

Eliahsberg functions ℰ𝑁(𝜃, 𝜔) and ℰ𝑃(𝜃, 𝜔) as is explained in SIII. 

 

II.  Correction of Systematic Errors and Renormalization of the 

ARPES Data 

 
During the measurements, the sample orientation sometimes shows a small change with 

temperature, originating from the thermal expansion of the connection parts of the cryostat. This 

drift may induce a small angle (momentum) shift in the measured photoemission spectrum. This 

effect is too small to be removed in situ during the measurement by realigning the sample at each 



temperature because of the limited motor-driven angular precision. For the high-precision data 

analysis performed in the present work which requires absolute measurements of counts of flux 

of electrons at the detector, such effects must be taken care of. We needed to carry out small 

intensity renormalization and angle shift corrections on the measured data. The corrections are 

based on the fact that, for ARPES data taken along a given momentum cut at different 

temperatures, the high binding energy part should show negligible change with temperature. In 

some of the measurements, no corrections are needed. This is illustrated in Fig. 1 in the main 

paper and especially the expanded panel C in it. In this case, the measurement condition is stable 

(negligible laser photon flux variation and negligible sample shift with temperature change), the 

high energy part stays the same for different temperatures in terms of both intensity and 

extracted dispersion (between −0.4 eV and −0.3 eV). Here no correction is necessary and 

MDCs are directly extracted. Fig. S1 illustrates a case in which corrections are needed. 

Momentum correction is performed to make sure that, at each temperature, the high energy 

dispersions coincide with each other by putting a small offset to the momentum along the cut 

direction. The coincidence of the high energy dispersions after such a correction in Fig. S1C, 

limited only by the noise in the data, validates the application of our momentum correction 

procedure. 

 

The effect of the slight laser photon flux fluctuation on the data can be removed by normalizing 

the measured data at different temperatures so that the intensity of the high binding part is the 

same. Such an intensity normalization is performed as the first step in our data analysis. 

 

Also important is to renormalize the MDCs in the superconducting state such that the pairing 

self-energy and accompanying deviation of the normal self-energy from above 𝑇𝑐  is only 

determined by the difference in the ARPES intensities between the superconducting and normal 

states. Any misfits in the normal state may affect the superconducting state fittings and cause 

spurious results if done without the renormalization. The sources of the misfits in the normal 

state are most likely from the uncertainty of the bare dispersion as discussed below. The 

renormalizations were done as follows: We first fit the MDCs slightly above 𝑇𝑐, i.e., 97 K for 

UD89 data and 90 K for OD82 data, as a function of 𝑘⊥ with the enforcement of 𝜙 = 0 and 



determine the normal state fitting curve. Then, we divide the MDC data to calculate the ratio, 

𝐼𝑆(𝑘⊥, 𝜃, 𝜔)/𝐼𝑁(𝑘⊥, 𝜃, 𝜔), and multiply the ratio by the normal state fitting curve. This is the 

renormalized MDCs in the superconducting states we fit. 

 

A significant source of the systematic error is the lack of precise knowledge of the bare 

dispersion 𝜉(𝐤) at high energies. The Fermi-surface is well fitted by more than one form of 

dispersion. As mentioned we have used two different parameterization of the band-structure. The 

results for normal self-energy near the Fermi-energy are always the same but differ far from it 

for 𝜔 larger than about 3Δ ≈ 65 meV. However, we find very little variation in the pairing 

self-energy. This is because it is obtained from the differences of the data in the normal and 

superconducting states as discussed above, both of which are deduced with the same 𝜉(𝐤). The 

difference in the normal self-energy with the two different band-structures leads to differences 

which are discussed below. 

 

The maximum entropy method for solution of integral equations can introduce unphysical 

oscillations in the results. These oscillations are uncontrollable in the solution of the integral 

equations if we take as input the raw deduced values of the self-energies, such as shown in Fig. 3. 

We average the measured self-energy at each energy over ±5 meV around it as inputs to the 

integral equations. Even with such averaging, we obtain smoothly varying oscillatory results, 

varying at any energy by about ±10%, through different constraints imposed in the process of 

the solution. We have guided ourselves by consistency and smooth variations of the results from 

one temperature to another. The final results presented for the Eliashberg functions are similar to 

the errors in the experiments discussed above. Adding all errors in quadrature, the results may be 

trusted only to about 10% at any energy up to about 0.1 eV and only up to about 15% at the 

maximum energies of about 0.2 eV. 

 

SII.1 Limits of Validity of Results 

Using a band-structure 𝜉(𝐤) given in high quality band-structure calculations, we can extract 

the absolute value of the normal self-energy Σ(𝐤, 𝜔) to an accuracy of about 2% over the whole 

range of measurements and at all angles up to 0.45 eV. The poorest signal to noise ratio occurs in 



determining the pairing self-energy 𝜙(𝐤, 𝜔)  because it can only be extracted from the 

difference between the normal and superconducting state signals: 𝐼𝑆(𝐤, 𝜔) − 𝐼𝑁(𝐤, 𝜔). It will be 

apparent below that the accuracy in extracting 𝜙(𝐤, 𝜔) is better than ~10% till up to ~0.2 eV 

for 𝜃 between 20 ∘ and 35 ∘ but progressively gets worse at larger energies; the data are not 

useful to directly deduce the pairing self-energy above about 0.2 eV. Similarly, signal to noise in 

𝜙 becomes poorer when the momentum cuts come closer to the diagonal direction (𝜃 = 45∘) 

and the temperature comes closer to 𝑇𝑐, because 𝜙 gets smaller. Therefore, such data were not 

used in the present analysis. It is expected that the next generation ARPES apparatus will be able 

to alleviate these limitations. However, it is expected that the principal conclusions of this paper, 

using the measured results and reasoned extrapolations from it, will continue to hold. 

 

III.  Equations for the Self-Energies 

 

Eliashberg derived the integral equations for the normal and the pairing self-energies starting 

from a Hamiltonian of electrons and phonons through the leading order perturbation in the 

electron-phonon interactions. This is justified by the Migdal theorem and the small magnitude 

typically of the parameter 𝜆𝜔𝐷/𝐸𝐹; 𝜆 is the dimensionless coupling constant, 𝜔𝐷 the Debye 

frequency, and 𝐸𝐹 the typical band-width. In our case, the cut-off frequency of the fluctuations 

is similar to the band-width and the coupling constant is about 0.5. Therefore the accuracy of the 

extracted Eliashberg functions from the measured self-energies may be open to question. We 

first show here that, given an experimentally obtained self-energy function, the momentum and 

energy dependence of the collective modes leading to the self-energy can be determined from the 

Eliashberg equations without the Migdal or weak-coupling assumptions. This is true of the 

McMillan-Rowell type of results also. But in that case, Migdal’s theorem obviates the need to 

pose the question. The procedure using the experimental self-energies to deduce the fluctuations, 

is quite different from calculating the self-energy using a spectra of fluctuations not obeying the 

Migdal approximation, which may be impossibly hard. 

 

In the normal state, the self-energies can be expressed [38,39] exactly in terms of the irreducible 

vertex ℐ(𝐤, 𝐤′, 𝜔, 𝜔′, 𝐪 = 0, Ω = 0) and the exact Green’s function 𝐺̂(𝐤, 𝜔) of Eq. (3). This is 



easily generalized to the superconducting state in which the relation between the self-energies, 

the vertices and the Green’s function is shown in Fig. S2A. Assuming that the collective mode 

contributions to the vertex are a function primarily of the energy transfer (𝜔 − 𝜔′), the integral 

Eq. S2A for the self-energy is,   

 

Σ̂(𝐤, 𝜔) = ∫ 𝑑𝜔′𝑇𝑟 ∑

𝑘′

ℐ(𝐤, 𝐤′, 𝜔 − 𝜔′, 𝐪 = 0, Ω = 0)𝐺̂(𝐤′, 𝜔′)                (S12) 

  

This equation is in the Gorkov-Nambu space,   

  

Σ̂(𝐤, 𝜔) ≡ Σ0(𝐤, 𝜔)𝜏0 + Σ3(𝐤, 𝜔)𝜏3 + 𝜙(𝐤, 𝜔)𝜏1                                   (S13) 

  

Similarly 𝐺̂(𝐤, 𝜔) is given in 𝜏-space as in Eq. (S3). ℐ is similarly the sum of the normal 𝜏3𝜏3 

part, ℐ33, and a 𝜏1𝜏1 part ℐ11. The trace in Eq. (S12) is in 𝜏-space. ℐ is irreducible in the 

(𝐪, Ω) particle-hole channel. Further, ℐ = ℐ(0) + ℐ(1), the sum of a part with total spin 0 and 

with 1. Given the correct Σ̂(𝐤, 𝜔), the solution of this integral equation gives the equally correct 

irreducible vertex ℐ(𝐤, 𝐤′, 𝜔, 𝜔′). Since Eq. (S12) is exact, it includes all vertex corrections and 

self-energy insertions in a perturbative calculation of the self-energy. 

 

One may further write, for a square lattice with s or d-wave pairing,   

 

 ℐ33(𝐤, 𝐤′, 𝜈) = 𝑔0𝐴1𝑔(𝑘̂)𝐴1𝑔(𝑘̂′)𝐼33(𝑘, 𝑘′, 𝜈) +                                 (S14) 

  

ℐ11(𝐤, 𝐤′, 𝜈) = 𝑔2,1𝐵1𝑔(𝑘̂)𝐵1𝑔(𝑘̂′)𝐼11(𝑘, 𝑘′, 𝜈) 

                                      +𝑔2,2𝐵2𝑔(𝑘̂)𝐵2𝑔(𝑘̂′)𝐼11(𝑘, 𝑘′, 𝜈) +                               (S15) 

  

where 𝐴1𝑔, 𝐵1𝑔, 𝐵2𝑔, .. are the relevant irreducible representations of the point group and the 

𝑔’s are the corresponding coupling constants. 

 

Since the normal self-energy must be of 𝐴1𝑔 symmetry and superconductivity in cuprates is in  



𝐵1𝑔  symmetry, it follows from Eq. (S12) that measurement of the normal and pairing 

self-energy and the solution of that equation yields, on integration over 𝐤′, (using symmetry of 

the vertices under interchange of 𝑘 and 𝑘′), the irreducible vertices in the normal 𝐼33(𝑘, 𝑘′, 𝜈) 

and the pairing 𝐼11(𝑘, 𝑘′, 𝜈) channels. Eqs. (S12, vertex-decomp) are shown below to be 

identical to the more familar Eliashberg equations. 

 

SIII.2 Familar Eliashberg Integral Equations for d-wave Superconductors 

 

If as assumed above, the dependence of the irreducible vertex on 𝜔 and 𝜔′ is only through the 

energy transfer (𝜔 − 𝜔′), Fig. S2A are identical to the more familiar skeleton diagrams for the 

self-energy, shown as Fig. S2B. To show this, we identify that the irreducible vertex for the 

normal self-energy ℐ33(𝐤, 𝐤′, 𝜈) = 𝑔(𝑘̂, 𝑘′̂)𝐹(𝐤, 𝐤′, 𝜈)𝑔(𝑘′̂, 𝑘̂), and for the pairing self-energy 

ℐ11(𝐤, 𝐤′, 𝜈) = 𝑔(𝑘̂, 𝑘′̂)𝐹(𝐤, 𝐤′, 𝜈)𝑔(−𝑘̂, −𝑘′̂) . Now consider Eq. (S12). On re-expressing 

𝐺(𝐤, 𝜔) in terms of the spectral function and re-arranging, the familiar Eliashberg equations 2,3 

(S16-S17) below, as generalized for d-wave superconductivity27,13, follow in terms of the normal 

Eliashberg function ℰ𝑁(𝜃, 𝜔) and the d-wave pairing Eliashberg function ℰ𝑃(𝜃, 𝜔), defined 

below.   

  

Σ(𝜃, 𝜔) = ∫
∞

−∞

𝑑𝜔′𝐿(𝜔, 𝜔′)ℰ𝑁(𝜃, 𝜔′)                                       (S16) 

  

𝜙(𝜃, 𝜔) = − ∫
∞

−∞

𝑑𝜔′𝑀(𝜔, 𝜔′)ℰ𝑃(𝜃, 𝜔′)                                  (S17) 

  

𝐿(𝜔, 𝜔′) ≡ ∫
∞

−∞

𝑓(𝜀) + 𝑛(−𝜔′)

𝜀 + 𝜔′ − 𝜔 − 𝑖𝛿
𝑁1(𝜀)                                      (S18) 

  

𝑀(𝜔, 𝜔′) ≡ ∫
∞

−∞

𝑓(𝜀) + 𝑛(−𝜔′)

𝜀 + 𝜔′ − 𝜔 − 𝑖𝛿
𝐷1(𝜀)                                     (S19) 

  



𝑁1(𝜀) ≡< 𝑅𝑒
𝑊(𝜃′, 𝜀)

√𝑊2(𝜃′, 𝜀) − 𝜙2(𝜃′, 𝜀)
>𝜃′                                 (S20) 

  

𝐷1(𝜀) ≡< 𝑅𝑒
2 𝜙(𝜃′, 𝜀) cos(2𝜃′)

√𝑊2(𝜃′, 𝜀) − 𝜙2(𝜃′, 𝜀)
>𝜃′                                  (S21) 

  

Here <. . >𝜃′ implies the normalized integral over 𝜃′. The normal and pairing Eliashberg 

functions are given in terms of the coupling constant and interaction vertices,   

  

𝑁1(𝜀)ℰ𝑁(𝐤, 𝜔) = ∫ 𝑑𝐤′𝐴𝑁(𝐤′, 𝜀)[|𝑔(0)(𝐤, 𝐤′)|2(−
1

𝜋
)𝐼𝑚ℱ(0)(𝐤, 𝐤′, 𝜔) 

                                            +3 |𝑔(1)(𝐤, 𝐤′)|2 (−
1

𝜋
) 𝐼𝑚𝐹(1)(𝐤, 𝐤′, 𝜔)]                                    (S22) 

  

𝐷1(𝜀)ℰ𝑃(𝐤, 𝜔) = ∫ 𝑑𝐤′𝐴𝜙(𝐤′, 𝜀)[𝑔(0)(𝐤, 𝐤′)𝑔(0)(−𝐤, −𝐤′)(−
1

𝜋
)𝐼𝑚ℱ(0)(𝐤, 𝐤′, 𝜔) 

                                           −3𝑔(1)(𝐤, 𝐤′)𝑔(1)(−𝐤, −𝐤′)(−
1

𝜋
)𝐼𝑚𝐹(1)(𝐤, 𝐤′, 𝜔)]                                (S23) 

  

𝐹(0)(𝐤, 𝐤′, 𝜔) and 𝐹(1)(𝐤, 𝐤′, 𝜔) are, respectively, the spin-0 and spin-1 fluctuation propagators. 

Their corresponding vertices with fermions are 𝑔(0)(𝐤, 𝐤′) and 𝑔(1)(𝐤, 𝐤′) respectively. 𝐴 

and 𝐴𝜙 are, respectively, the normal single-particle spectral function of Eq. (S2) and the pairing 

part (12 component in 𝜏-space) of the matrix single-particle spectral function given in terms of 

Eq. (S3). 𝐴(𝐤, 𝜔) has the full symmetry of the lattice 𝐴1𝑔(𝑘̂). And 𝐴𝜙(𝐤, 𝜔) has the angular 

dependence 𝐵1𝑔(𝑘̂) . In the isotropic approximation, the angle-dependences are 1  and 

√2cos(2𝜃), respectively. 

 

Eqs. (S16 – S23) are used to solve for the Eliashberg functions. We first calculate 𝑁1 and 𝐷1 

from Eq. (S20) using the self-energies extracted from the fits to MDCs, and then calculate the 

matrices 𝑀 and 𝐿 from Eq. (S18 – S19). The inverse matrices of 𝐿 and 𝑀 are used to obtain 

ℰ𝑁 from Σ and ℰ𝑃 from 𝜙. The inversion matrices 𝐿−1 and 𝑀−1 were calculated using the 



maximum entropy method to treat the logarithmically singular cases as well. 

 

IV.  Comparison of theories with the results from experiments 

 

We now consider some of the ideas and calculations for models of cuprates in relation to the 

Eliashberg theory and the experimental results presented in the main paper. 

 

Phonons  

The only part of the effective interactions deduced by the experiments in the characteristic 

energy range of the phonons is the broad feature around 50 meV. But this is absent in the pairing 

Eliashberg function ℰ𝑃 in the d-wave channel near 𝑇𝑐. As generally agreed, phonons are not 

responsible for d-wave pairing in the cuprates. 

 

Antiferromagnetic Fluctuations  

In the usual theory22,40 of promotion of d-wave superconductivity by antiferromagnetic (AFM) 

fluctuations, 𝑔(1)(𝐤, 𝐤′)𝑔(1)(−𝐤, −𝐤′) = |𝑔(1)(𝐤, 𝐤′)|2. The spin-1 fluctuations ℱ(1)(𝐤, 𝐤′, 𝜔), 

projected to the B1𝑔 channel leads to a sign for ℰ𝑃 which is opposite to that projected to 

identity. d-wave superconductivity is therefore expected. The AFM fluctuations of the Hubbard 

model do provide an attractive pairing in the d-wave channel if their correlation length is much 

larger22,40,41 than 𝑘𝐹
−1. 

 

Systematic calculations28 have used the measured 𝑞-dependent spin-fluctuation spectra29 in 

La2-xSrxCuO4 at various 𝑥 in the Eliashberg equations to calculate the momentum and frequency 

dependence of the normal and pairing self-energies, Σ(𝐤, 𝜔) and 𝜙(𝐤, 𝜔). The unknown 

coupling constant is adjusted to give the measured values of 𝑇𝑐. This coupling constant has to be 

adjusted upwards with increased doping because the amplitude of the fluctuations go down with 

doping in the measurements while 𝑇𝑐 goes up. The calculated results for the pairing self-energy 

near optimal doping at various angles are shown in Fig. S3. The angle dependence shows the 

𝐵1𝑔 dependence of the d-wave gap, but the frequency dependence is strongly peaked (with some 

structure in between) in the low energy region at about 0.1 eV and then goes to 0 rapidly. The 



physics of the peak and the reason for the rapid vanishing of the self-energy are fully discussed 

in Ref. [28] in terms of the measured antiferromagnetic fluctuations. The dependence in Fig. S3 

should be compared with the experimental results for the pairing self-energy shown in Fig. 3, 

where a nearly constant dependence is found up to the cut-off, beside the superconductivity 

induced low energy features. Similar results with peaking of the pairing self-energy at lower 

energy, consistent with a longer AFM correlation length, appear in the calculated results Ref. [28] 

on using the data at lower dopings. The calculated normal self-energy Σ(𝜃, 𝜔) (See Figs. (2-4) 

of Ref. [28]) shows a strong 𝜃 dependence and does not have a linear in 𝜔 dependence. Since 

the normal self-energy in these calculations is angle dependent, ideas based on such calculations 

cannot be used to address the “central paradox" – that the normal self-energy is angle 

independent while the pairing is in the d-wave channel.  

 

Fluctuations of the Hubbard Model 

A very sophisticated calculation of the normal self-energy and the gap Δ(𝜔) starting with the 

one band Hubbard model, using 8 site cluster dynamical mean-field theory at various dopings 

has been performed30. Such calculations do not provide the angle dependence of the self-energy 

and one must assume, quite reasonably, that it is in the d-wave channel just like the experiments. 

In other calculations on the same model with variants of the same technique42, d-wave 

superconductivity is found. We show in Fig. S4 the frequency dependence of the gap 𝐼𝑚Δ(𝜔). 

These are also peaked at low energies, at about 0.2 and 1 in units of the kinetic energy parameter 

𝑡, with nearly 0 in between. The parameter 𝑡 is adjusted in these calculations to be about 0.3 eV 

because the maximum 𝑇𝑐 as a function of doping in the calculations is ≈ 𝑡/60. The normal 

self-energy has also been calculated, for example Fig. (5) in Ref. [31]. The normal self-energy is 

constant beyond about 0.2 𝑡. The calculated results should be compared with the experimental 

results in Fig. 3.   

  

Fluctuations of Loop-Current Order  

The motivation of this model comes from the observation of diffraction pattern with polarized 

elastic neutron scattering43 consistent with loop-current order44,45 in four different families of 

underdoped cuprates, with a quantum-critical point near optimal doping. The quantum-critical 



fluctuations of the loop-current model belong to the universality class of the dissipative quantum 

XY model. Over a range of parameters, they have been derived46,47 and checked and extended by 

Monte-Carlo calculations32. Such fluctuations provide ℱ0(𝐤, 𝐤′, 𝜔)  with a scale-invariant 

frequency dependence ∝ tanh(𝜔/2𝑇) in the normal state up to a cut-off 𝜔𝑐. This frequency 

dependence is consistent with the frequency dependence of ℱ0(𝜔) deduced above from ℰ𝑁 for 

𝑇 ≳ 𝑇𝑐, except for the 50 meV bump, and ℰ𝑃 for 𝑇 → 𝑇𝑐, as well as for the normal state 

singular-Fermi-liquid properties48. This form of ℱ0(𝐤, 𝐤′, 𝜔) leads to frequency dependence 

observed in the experimental normal and pairing self-energies. Evidence of the latter is the 

calculation and comparison with the pairing self-energy starting from the measured ℰ𝑁(𝜔) ≈

ℰ𝑃(𝜃, 𝜔)/cos(2𝜃) near 𝑇𝑐, given in Fig. 5. 

 

From the point of the experimental results in this paper, a crucial aspect of such fluctuations is 

that they resolve the central paradox of the high 𝑇𝑐  problem in cuprates, that the normal 

self-energy is nearly angle-independent and the pairing is in the d-wave channel. To see this, one 

must consider the vertex 𝑔(𝐤, 𝐤′) for such fluctuations to fermions. It has been derived33 that 

scattering of fermions occurs with such fluctuations through their angular momentum. For an 

isotropic approximation to the fermion dispersion near the Fermi-surface (results with lattice 

symmetry have been given in Ref. [33] but within the accuracy of the results obtained here, the 

isotropic approximation is adequate),   

  

𝑔(𝐤, 𝐤′) = 𝑖𝑔0(𝐤̂ × 𝐤̂′)                                                              (S24) 

  

The angle-dependence in Σ(𝜃, 𝜔) and 𝜙(𝜃, 𝜔) comes from integrating the vertex part of the 

effective interactions,   

  

|𝑔(𝐤, 𝐤′)|2 = −𝑔(𝐤, 𝐤′)𝑔(−𝐤, −𝐤′) =
𝑔0

2

2
[1 − (cos2𝜃cos2𝜃′ + sin2𝜃sin2𝜃′)]          (S25) 

  

over 𝐤′  projected over the intermediate Green’s function shown in Fig. (S2) A and B 

respectively. The intermediate state has the full symmetry of the lattice; only the first term in Eq. 



(S25) then contributes on integration over 𝜃′. One therefore finds that Σ(𝐤, 𝜔) is only a 

function of 𝜔. 

 

Now, consider 𝜙(𝜃, 𝜔). Since the intermediate state at 𝜃′ is ∝ cos(2𝜃′), only the second term 

in Eq. (S25) contributes on integration over 𝜃′, so that 𝜙(𝜃, 𝜔) ∝ cos(2𝜃). Note that this part 

of the vertex is attractive while the s-wave part is repulsive in the pairing channel. The central 

paradox of high temperature superconductivity in cuprates is thus resolved. This has required ℱ 

to be nearly momentum-independent or equivalently be a separable function of momentum 

transfer and energy, as in the criticality derived for the observed order. The result that ℰ̃𝑃(𝜔) ≈

ℰ𝑁(𝜔) also follows. Corrections due to lattice symmetry may actually be expected in their ratio 

but not in the frequency dependence. In the isotropic approximation, the two attractive d-wave 

channels in 2D in Eq. (S25) give degenerate results. But, in the cuprates, the density of states 

projected to cos(2𝜃) or 𝑑𝑥2−𝑦2 symmetry is larger than that in sin(2𝜃) or 𝑑𝑥𝑦-symmetry 

favoring the former. The central paradox as to how the normal self-energy is angle-independent 

but the pairing self-energy has cos(2𝜃)  dependence is therefor resolved if the primary 

interaction among the fermions is through exchange of quantum critical fluctuations of the loop 

current order with a vertex with the symmetry of Eq. (S24). 

 
 
 
 

 



 
 
 

FIG. S1: Illustration of corrections to data needed due to systematic errors due to 

movement of sample with change in temperature. Color representation of the measured 

photoemission intensity along 10° to the Brillouin Zone in UD89 sample. (a) at 107 K and (b) at 

16 K. (c) gives the progression of the Energy-momentum dispersions at temperatures 16 K, 70 K, 

80 K, 97 K and 107 K. The inset in (c) gives on an expanded scale the illustration of the errors in 

the data due to sample movement on an expanded scale. In (d) and its inset, we show how we 

correct the systematic errors by aligning the high energy parts at different temperatures. The 

error in the raw data shown is the maximum in the data that we chose to analyze. 



 
 
FIG. S2: Exact representation of the normal and pairing self-energies. 𝐀  gives the 

self-energy in Gor’kov-Nambu space in terms of the exact Irreducible vertex and the exact 

Green’s function. 𝐁 is equivalent to 𝐀 in terms of the more familiar skeleton diagrams, and 

gives on the left the the normal self-energy Σ(𝐤, 𝜔) and on the right the pairing self-energy 

𝜙(𝐤, 𝜔). The direction of the external legs of the vertex ℐ, of the self-energy 𝑆, and of the 

Green’s function 𝒢 in 𝐀 for the normal and the pairing self-energy components are identical to 

those in 𝐁. The wiggly line in 𝐁 are the fluctuations 𝐹(𝐤, 𝐤′, 𝜔 − 𝜔′) exchanged by the 

fermions through vertices 𝑔(𝐤, 𝐤′). The normal self-energy as a function of (𝐤) as well as the 

intermediate normal state propagator on the left as a function of (𝐤′) have the full symmetry of 

the lattice, while on the right, the intermediate pairing propagator at 𝐤′, −𝐤′ as well as the 

pairing self-energy at 𝐤, −𝐤 have the symmetry of d-wave superconductivity; for example, the 

latter transforms as cos2𝜃𝐤̂ in the continuum approximation.  



 
 
FIG. S3: The Imaginary part of the pairing self-energy at various angles across the 

Fermi-surface calculated in Ref. [28] from the measured spin-fluctuation spectra in La2-xSrxCuO4 

by Vignolle et al. Ref. [29] at optimal doping. Results at other dopings may be read in the 

references given as also the calculated normal self-energy. The frequency dependence calculated 

does not compare well with the experimental pairing self-energy in Fig. 3, although its angular 

dependence is consistent with d-wave superconductivity. 



 
 

FIG. S4: Imaginary part of the gap function for the Hubbard model calculated by Ref. [30] 

for various dopings indicated in the plot. (The vertical dashed line is used for some other 

purposes in this reference and does not concern us.) The energy scale 𝜔 is in units of the kinetic 

energy parameter 𝑡 ≈ 0.3𝑒𝑉, chosen to get the maximum 𝑇𝑐 as a function of doping to be 

𝑡/60, and the local repulsion parameter 𝑈 = 6𝑡. The gap function Δ(𝜔) and the pairing 

self-energy 𝜙(𝜔) are related by the quasi-particle renormalization 𝑍(𝜔), which is very weakly 

𝜔-dependent. The result shown here, specifically the rapid decrease to nearly 0 between the two 

bumps, does not compare well with the frequency dependence of the experimental pairing 

self-energy in Fig. 3. 

   

 




