Science Advances

Supplementary Materials

This PDF file includes:

  • Materials and Methods
  • Fig. S1. Solution IR spectra of 1, 1ph, and Et21·(BF4)2 in dichloromethane.
  • Fig. S2. 1H NMR (400 MHz) of 1 in CD2Cl2.
  • Fig. S3. 31P NMR (162 MHz) of 1 in CD2Cl2.
  • Fig. S4. 1H1H correlation spectroscopy (COSY; 300 MHz) of 1 in CD2Cl2.
  • Fig. S5. Nuclear Overhauser effect spectroscopy (NOESY; 300 MHz) of 1 in CD2Cl2.
  • Fig. S6. 1H NMR (400 MHz) of 1ph in CD2Cl2.
  • Fig. S7. 31P NMR (162 MHz) of 1ph in CD2Cl2.
  • Fig. S8. FD mass analysis of 1.
  • Fig. S9. FD mass analysis of 1ph.
  • Fig. S10. X-ray diffraction structure of 1ph with displacement ellipsoids at 50% probability.
  • Fig. S11. Bulk electrolysis of 10 μmol 1 on a carbon sponge electrode.
  • Fig. S12. Integrated data from fig. S11.
  • Fig. S13. Cyclic voltammograms of 0.5 mM 1.
  • Fig. S14. Cyclic voltammograms of 0.5 mM 1, starting from −1.6 V to the cathodic peak, then cycling over the reoxidation wave.
  • Fig. S15. Simulation of cyclic voltammograms (DigiElch) from fig. S13 (scan rate, 0.1 V s−1).
  • Fig. S16. Simulation of cyclic voltammograms (DigiElch) from fig. S13 (scan rate, 1.0 V s−1).
  • Fig. S17. UV-vis spectra of 1 and ZnTPP at a path length of 10 mm.
  • Fig. S18. UV-vis titration of a constant concentration of 80 μM ZnTPP with increasing equivalents 1.
  • Fig. S19. Output of the fitting procedure.
  • Fig. S20. Fluorescence quenching titration of a constant concentration of ZnTPP with 1.
  • Fig. S21. UV-vis spectrum of the sample used in the TR-IR experiment (path length, 500 μm).
  • Fig. S22. Rise and decay profiles plus global biexponential fitting from TR-IR at four wavelength maxima.
  • Fig. S23. Cyclic voltammograms of 0.5 mM 1 and 4.0 mM Et3NHBF4.
  • Fig. S24. Cyclic voltammograms of 0.5 mM 1 and 8.0 mM Et3NHBF4.
  • Fig. S25. Cyclic voltammograms of 0.5 mM 1 and 16 mM Et3NHBF4.
  • Fig. S26. Cyclic voltammograms of 0.5 mM 1 and 32 mM Et3NHBF4.
  • Fig. S27. 1H NMR (400 MHz) of 1 in CD2Cl2 in the absence and presence of 4 eq of Et3NHBF4.
  • Fig. S28. Cathodic peak potential versus ln(scan rate).
  • Fig. S29. Cathodic peak potential versus ln(acid2).
  • Fig. S30. Simulation of cyclic voltammograms from fig. S23.
  • Fig. S31. Differential spectral evolution (pyridine region shown) going from 1 to 2.
  • Fig. S32. Differential spectral evolution (pyridine region shown) going from 2 to 3 and then to 13−.
  • Fig. S33. Cyclic voltammogram of 1 mM 1 and 4.0 mM Et3NHBF4 and fits for the simulated model.
  • Fig. S34. Cyclic voltammograms of 1.0 mM 1ph.
  • Fig. S35. Cyclic voltammograms of 1.0 mM 1ph in the presence of 8.0 mM Et3NHBF4.
  • Fig. S36. Cathodic peak potential versus ln(scan rate) and ln(acid).
  • Fig. S37. Foot-of-the-wave analysis of the voltammograms in Fig. 8A.
  • Fig. S38. Synthesis and structure of Et21·(BF4)2.
  • Fig. S39. 1H NMR (400 MHz) of Et21·(BF4)2 in CD2Cl2.
  • Fig. S40. 31P NMR (162 MHz) of Et21·(BF4)2 in CD2Cl2.
  • Fig. S41. Cyclic voltammograms of 2 μM Et21·(BF4)2 in 0.1 M Na2SO4.
  • Fig. S42. Peak current versus scan rate for the adsorption waves in fig. S41.
  • Fig. S43. Cyclic voltammogram of 1 M H2SO4 (background currents).
  • Fig. S44. Cyclic voltammogram of 2 μM phosphole ligand in 1 M H2SO4.
  • Table S1. Comparison of the IR and NMR data of 1, 1ph, and reference compounds.
  • Table S2. Fitted parameters (DigiElch) for the redox processes of 1 in the absence of acid.
  • Table S3. Calculated molar extinction coefficients and R2 value of the fit.
  • Table S4. Titration setup (with equivalents 1 with respect to ZnTPP) measured and corrected intensity at 645 nm and free ZnTPP concentration.
  • Table S5. Fitted parameters for cyclic voltammogram as shown in figs. S23 to S26.
  • Table S6. Comparison of reduced and protonated 4,4′-bipyridine species with species formed during spectroelectrochemical reduction in the presence of acid.
  • Table S7. Model parameters for cyclic voltammogram as shown in fig. S33.
  • Table S8. TON during one cyclic voltammogram scan at various scan rates.
  • References (46–48)

Download PDF

Files in this Data Supplement: