Science Advances

Supplementary Materials

This PDF file includes:

  • section S1. Computational methods.
  • section S2. Genetic information for the WLLFHS hMOF database.
  • section S3. Genetic algorithm.
  • section S4. Discussion about a definition of CO2 working capacity.
  • section S5. Identification of top-performing hMOFs for synthesis.
  • section S6. Synthesis of NOTT-101/OEt and VEXTUO.
  • section S7. Powder x-ray diffraction data.
  • section S8. N2 sorption data.
  • section S9. CO2 and H2 simulated and measured isotherms for VEXTUO.
  • section S10. IAST calculations.
  • fig. S1. Nitrogen model.
  • fig. S2. Carbon dioxide model.
  • fig. S3. Hydrogen model.
  • fig. S4. Correspondence between genes and inorganic nodes.
  • fig. S5. Correspondence between genes and organic linkers.
  • fig. S6. Correspondence between genes and functional groups.
  • fig. S7. Examples of duplicate MOFs.
  • fig. S8. Duplicity of structures in the WLLFHS hMOF database.
  • fig. S9. Performance similarity among duplicate hMOFs.
  • fig. S10. Textural properties in the original and reduced WLLFHS hMOF database.
  • fig. S11. Gene distribution in the reduced WLLFSH hMOF database.
  • fig. S12. Suitable combinations of building blocks.
  • fig. S13. A workflow for the genetic operations of crossover and mutation.
  • fig. S14. Determination of the optimal length of GA runs.
  • fig. S15. Schematic for a Skarstrom cycle of a CO2/H2 separation unit.
  • fig. S16. Gas concentration profiles during the Skarstrom cycle.
  • fig. S17. Impact of CO2/H2 selectivity on H2 purity.
  • fig. S18. Rearrangement of functional groups in potential synthesis targets.
  • fig. S19. MOF representative cluster for DFT calculations.
  • fig. S20. Performance of investigated hMOFs and CoRE MOFs.
  • fig. S21. Ligand for NOTT-101/OEt.
  • fig. S22. Ligand for VEXTUO.
  • fig. S23. Nitrogen adsorption for NOTT-101/OEt.
  • fig. S24. Nitrogen adsorption for VEXTUO.
  • fig. S25. Powder x-ray diffraction data patterns for NOTT-101/OEt.
  • fig. S26. Powder x-ray diffraction data patterns for VEXTUO.
  • fig. S27. CO2 and H2 single-component adsorption for VEXTUO.
  • fig. S28. Dual-site Langmuir fit for CO2 and H2 isotherms of NOTT-101/OEt.
  • fig. S29. Dual-site Langmuir fit for CO2 and H2 isotherms of VEXTUO.
  • fig. S30. Dual-site Langmuir fit for CO2 and H2 isotherms of Mg-MOF-74.
  • fig. S31. Dual-site Langmuir fit for CO2 and H2 isotherms of Cu-BTTri.
  • fig. S32. IAST accuracy test on NOTT-101/OEt.
  • fig. S33. CO2/H2 selectivity versus pressure for NOTT-101/OEt.
  • fig. S34. CO2 working capacity as a function of pressure.
  • table S1. Number of hMOFs in different subsets with the gene-based identification criteria.
  • table S2. Data from GA testing.
  • table S3. CO2/H2 adsorption properties for the Zn- and Cu-based nbo hMOFs.
  • table S4. Textural properties of the top 1% of evaluated hMOFs for three performance measures.
  • table S5. List of top 30 CoRE MOFs.
  • table S6. IAST parameters for the 20:80 mixture of CO2/H2.
  • References (4566)

Download PDF

Files in this Data Supplement: