Science Advances

Supplementary Materials

This PDF file includes:

  • Supplementary Materials and Methods
  • section S1. General experimental
  • section S2. General procedures
  • section S3. Optimization of the mechanochemical synthesis of complex 3
  • section S4. Synthesis and characterization of complexes
  • section S5. Synthesis of organogermanes
  • section S6. Characterization data
  • section S7. Single-crystal x-ray diffraction
  • fig. S1. PXRD patterns; initial experiments.
  • fig. S2. PXRD data for the optimized synthesis of complex 3, exploring the liquid additive in LAG.
  • fig. S3. PXRD data for the optimized synthesis of complex 3, exploring the volume of liquid additive in LAG.
  • fig. S4. PXRD data for the optimized synthesis of complex 3, exploring Py equivalents.
  • fig. S5. PXRD data for the optimized synthesis of complex 3, exploring different milling reaction times.
  • fig. S6. PXRD data for the optimized synthesis of complex 3, exploring milling frequency.
  • fig. S7. PXRD data for the optimized 1-g scale synthesis of complex 3, exploring milling frequency.
  • fig. S8. PXRD data for the optimized 1-g scale synthesis of complexes 4 and 5.
  • fig. S9. PXRD data for the optimized synthesis of complex 3 from GeO2.
  • fig. S10. PXRD data for the optimized synthesis of complex 3 from GeO2/ZnO mixtures.
  • fig. S11. Reaction apparatus for generating GeH4.
  • fig. S12. 1H NMR (500 MHz, CDCl3) spectrum of complex 3.
  • fig. S13. Thermogravimetric analysis (TGA) of complex 3.
  • fig. S14. First derivatives of the Ge K-edge XAS of complex 3 compared to Ge(HPO4)2 and GeO2 as reference materials.
  • fig. S15. 1H NMR (500 MHz, CDCl3) spectrum of complex 4.
  • fig. S16. 13C NMR (125 MHz, CDCl3) spectrum of complex 4.
  • fig. S17. TGA of complex 4.
  • fig. S18. 1H NMR (500 MHz, CDCl3) spectrum of complex 5.
  • fig. S19. 13C NMR (125 MHz, CDCl3) spectrum of complex 5.
  • fig. S20. TGA of complex 5.
  • fig. S21. 1H NMR (400 MHz, CDCl3) spectrum of GeBu4 (inset, expansion from 1.45 to 0.60 ppm).
  • fig. S22. 13C NMR (100 MHz, CDCl3) spectrum of GeBu4 (inset, expansion from 28 to 12 ppm).
  • fig. S23. 1H NMR (400 MHz, CDCl3) spectrum of GePh4 (inset, expansion from 7.65 to 7.35 ppm).
  • fig. S24. 13C NMR (100 MHz, CDCl3) spectrum of GePh4 (inset, expansion from 137 to 127 ppm).
  • fig. S25. 1H NMR (400 MHz, CDCl3) spectrum of GeBn4 (inset, expansion from 7.30 to 6.80 ppm).
  • fig. S26. 13C NMR (100 MHz, CDCl3) spectrum of GeBn4 (inset, expansion from 128.5 to 128.0 ppm).
  • fig. S27. 1H NMR (600 MHz, CDCl3) spectrum of Ge((CH2)5CH3)4 (inset, expansion from 1.40 to 0.65 ppm).
  • fig. S28. 13C NMR (150 MHz, CDCl3) spectrum of Ge((CH2)5CH3)4.
  • fig. S29. 1H NMR (400 MHz, CDCl3) spectrum of Ge(CH2–CH=CH2)4.
  • fig. S30. 1H NMR (400 MHz, CDCl3) spectrum of Ge(CH2–CH=CH2)4 from 1.86 to 1.70 ppm.
  • fig. S31. 1H NMR (400 MHz, CDCl3) spectrum of Ge(CH2–CH=CH2)4 from 5.90 to 4.80 ppm.
  • fig. S32. 13C NMR (100 MHz, CDCl3) spectrum of Ge(CH2–CH=CH2)4.
  • fig. S33. 1H NMR (600 MHz, CDCl3) spectrum of Ge(p-Tol)4 (inset, expansion from 7.50 to 7.15 ppm).
  • fig. S34. 13C NMR (150 MHz, CDCl3) spectrum of Ge(p-Tol)4.
  • fig. S35. 1H NMR (600 MHz, CDCl3) spectrum of complex 11.
  • fig. S36. 1H NMR (600 MHz, CDCl3) spectrum of complex 11 from 1.55 to 0.85 ppm.
  • fig. S37. 13C NMR (150 MHz, CDCl3) spectrum of complex 11.
  • fig. S38. 13C NMR (150 MHz, CDCl3) spectrum of complex 11 from 112.50 to 111.50 ppm.
  • fig. S39. 13C NMR (150 MHz, CDCl3) spectrum of complex 11 from 40 to 10 ppm.
  • fig. S40. Two possible isomers for complex 11.
  • fig. S41. Expansion of the 13C-1H HSQC spectrum of complex 11.
  • fig. S42. Expansion of the 13C-1H HMBC spectrum of complex 11.
  • fig. S43. Thermal ellipsoid plot of Ge(3,5-dtbc)2(Py)2∙2PhMe (3).
  • fig. S44. Thermal ellipsoid plot of Ge(3,5-dtbc)2(NMI)2∙DCM (4).
  • fig. S45. Thermal ellipsoid plot of Ge(3,5-dtbc)2(TMEDA)∙2DCM (5).
  • table S1. Optimization of LAG additive composition.
  • table S2. Optimization of LAG additive volume.
  • table S3. Optimization of Py equivalents.
  • table S4. Optimization of milling time.
  • table S5. Optimization of milling frequency.
  • table S6. Crystal data and structure refinement parameters for complexes 3 and 5.
  • References (41–42)

Download PDF

Files in this Data Supplement: