Science Advances

Supplementary Materials

This PDF file includes:

  • Section S1. Synthetic details and characterization of products
  • Section S2. X-ray diffraction studies
  • Section S3. Computational studies
  • Fig. S1. Labeling scheme for Na8.
  • Fig. S2. 1H NMR (400 MHz, THF-d8, 25°C) spectrum of Na8.
  • Fig. S3. 11B{1H} NMR (128 MHz, THF-d8, 25°C) spectrum of Na8.
  • Fig. S4. 13C{1H} NMR (101 MHz, THF-d8, 25°C) spectrum of Na8.
  • Fig. S5. 31P{1H} NMR (162 MHz, THF-d8, 25°C) spectrum of Na8.
  • Fig. S6. Labeling scheme for 9.
  • Fig. S7. 1H NMR (400 MHz, chloroform-d, 25°C) spectrum of 9.
  • Fig. S8. 13C{1H} NMR (101 MHz, chloroform-d, 25°C) spectrum of 9.
  • Fig. S9. 31P{1H} NMR (162 MHz, chloroform-d, 25°C) spectrum of 9.
  • Fig. S10. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum after heating 9 to 110°C in toluene-d8 for 22 hours.
  • Fig. S11. 1H NMR (162 MHz, benzene-d6, 25°C) spectrum after melting 9 at 130°C.
  • Fig. S12. 31{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum after melting 9 at 130°C.
  • Fig. S13. 31P{1H} NMR (162 MHz, hexanes, 25°C) spectrum of 9 in hexanes after being exposed to 254-nm light for 10 min.
  • Fig. S14. 31P{1H} NMR (162 MHz, hexanes, 25°C) spectrum of 9 in hexanes after being exposed to 254-nm light for 45 min.
  • Fig. S15. Trap-to-trap distillation of 1.
  • Fig. S16. Labeling scheme for 1.
  • Fig. S17. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.
  • Fig. S18. 13C{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of 1 and traces of pentane.
  • Fig. S19. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1.
  • Fig. S20. 1H, 13C-HSQC NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.
  • Fig. S21. 1H, 13C-HMBC NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.
  • Fig. S22. Comparison of 13C{1H} NMR (125 MHz, benzene-d6, 25°C) and 13C{1H,31P} NMR (125 MHz, benzene-d6, 25°C) spectra of 1.
  • Fig. S23. Comparison of 31P{1H} NMR (202 MHz, benzene-d6, 25°C) and 31P{1H,13C} NMR (202 MHz, benzene-d6, 25°C) NMR spectra of 1.
  • Fig. S24. 13C, 31P-HSQC NMR (202 MHz, benzene-d6, 25°C) correlation experiment selective for one bond couplings in compound 1.
  • Fig. S25. 13C, 31P-HSQC NMR (202 MHz, benzene-d6, 25°C) correlation experiment selective for two bond couplings in compound 1.
  • Fig. S26. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 1 before distillation.
  • Fig. S27. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of crude 1 before distillation.
  • Fig. S28. DART HRMS (Q-TOF) data corresponding to C15H28P+ and C15H27+.
  • Fig. S29. Labeling scheme for natural abundance 13C satellites observed in 31P{1H} NMR spectra.
  • Fig. S30. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1.
  • Fig. S31. 31P{1H} NMR (202 MHz, benzene-d6, 25°C) spectrum of 1.
  • Fig. S32. Experimental (black) and calculated (red) Raman spectrum of 1.
  • Fig. S33. Visualization of the totally symmetric breathing mode (a1), according to pseudo-C3v symmetry, of 1.
  • Fig. S34. Labeling scheme for (tBuC)3P(H)AOTf.
  • Fig. S35. 1H NMR (500 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
  • Fig. S36. 19F NMR (471 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
  • Fig. S37. 31P{1H} NMR (202 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
  • Fig. S38. 31P NMR (202 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
  • Fig. S39. DART HRMS (Q-TOF) data corresponding to C15H27+ and C14H11+.
  • Fig. S40. Initial 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of (tBuC)3P(H)AOTf.
  • Fig. S41. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of (tBuC)3P(H)AOTf after 16 hours.
  • Fig. S42. Labeling scheme for 10.
  • Fig. S43. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 10.
  • Fig. S44. 19F NMR (471 MHz, benzene-d6, 25°C) spectrum of 10.
  • Fig. S45. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.
  • Fig. S46. 31P NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.
  • Fig. S47. DART HRMS(Q-TOF) data corresponding to C15H27+ and C14H11+.
  • Fig. S48. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.
  • Fig. S49. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10 after 48 hours.
  • Fig. S50. Labeling scheme for 11 and observed by-product.
  • Fig. S51. Solvent supressed 1H NMR (400 MHz, THF, 25°C) spectrum of 11.
  • Fig. S52. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of 11.
  • Fig. S53. 31P NMR (162 MHz, THF, 25°C) spectrum of 11.
  • Fig. S54. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 before air exposure.
  • Fig. S55. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being exposed to air for 30 min.
  • Fig. S56. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being exposed to air for 12 hours.
  • Fig. S57. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 before being heated.
  • Fig. S58. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being heated for 45 min at 75°C.
  • Fig. S59. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum of 1 in toluene-d8 before being heated.
  • Fig. S60. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum of 1 in toluene-d8 after being heated for 3 hours at 130°C.
  • Fig. S61. 31P{1H} NMR (162 MHz, pentane, 25°C) spectrum of (tBuC)3P in pentane before being exposed to 254-nm light.
  • Fig. S62. 31P{1H} NMR (162 MHz, pentane, 25°C) spectrum of (tBuC)3P in pentane after being exposed to 254-nm light for 5 min.
  • Fig. S63. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with W(THF)(CO)5.
  • Fig. S64. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
  • Fig. S65. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
  • Fig. S66. 13C{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
  • Fig. S67. 31P{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
  • Fig. S68. Molecular structure of Na8, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.
  • Fig. S69. Molecular structure of 9, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.
  • Fig. S70. Molecular structure of 1, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.
  • Fig. S71. Crystals of 1 grown by sublimation.
  • Table S1. Crystallographic data for Na8.
  • Table S2. Bond lengths (Å) and angles (°) for Na8.
  • Table S3. Crystallographic data for 9.
  • Table S4. Bond lengths (Å) and angles (°) for 9.
  • Table S5. Crystallographic data for 1.
  • Table S6. Bond lengths (Å) and angles (°) for 1.
  • Table S7. Coordinates of 1.
  • Table S8. Raman frequencies of 1.
  • Table S9. Initial coordinates of tetrahedrane.
  • Table S10. Initial coordinates of white phosphorus.
  • References (3847)

Download PDF

Files in this Data Supplement: