PT - JOURNAL ARTICLE AU - Albertazzi, Bruno AU - Ozaki, Norimasa AU - Zhakhovsky, Vasily AU - Faenov, Anatoly AU - Habara, Hideaki AU - Harmand, Marion AU - Hartley, Nicholas AU - Ilnitsky, Denis AU - Inogamov, Nail AU - Inubushi, Yuichi AU - Ishikawa, Tetsuya AU - Katayama, Tetsuo AU - Koyama, Takahisa AU - Koenig, Michel AU - Krygier, Andrew AU - Matsuoka, Takeshi AU - Matsuyama, Satoshi AU - McBride, Emma AU - Migdal, Kirill Petrovich AU - Morard, Guillaume AU - Ohashi, Haruhiko AU - Okuchi, Takuo AU - Pikuz, Tatiana AU - Purevjav, Narangoo AU - Sakata, Osami AU - Sano, Yasuhisa AU - Sato, Tomoko AU - Sekine, Toshimori AU - Seto, Yusuke AU - Takahashi, Kenjiro AU - Tanaka, Kazuo AU - Tange, Yoshinori AU - Togashi, Tadashi AU - Tono, Kensuke AU - Umeda, Yuhei AU - Vinci, Tommaso AU - Yabashi, Makina AU - Yabuuchi, Toshinori AU - Yamauchi, Kazuto AU - Yumoto, Hirokatsu AU - Kodama, Ryosuke TI - Dynamic fracture of tantalum under extreme tensile stress AID - 10.1126/sciadv.1602705 DP - 2017 Jun 01 TA - Science Advances PG - e1602705 VI - 3 IP - 6 4099 - http://advances.sciencemag.org/content/3/6/e1602705.short 4100 - http://advances.sciencemag.org/content/3/6/e1602705.full SO - Sci Adv2017 Jun 01; 3 AB - The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of ~2 × 108 to 3.5 × 108 s−1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.