RT Journal Article
SR Electronic
T1 Demonstration of universal parametric entangling gates on a multi-qubit lattice
JF Science Advances
JO Sci Adv
FD American Association for the Advancement of Science
SP eaao3603
DO 10.1126/sciadv.aao3603
VO 4
IS 2
A1 Reagor, Matthew
A1 Osborn, Christopher B.
A1 Tezak, Nikolas
A1 Staley, Alexa
A1 Prawiroatmodjo, Guenevere
A1 Scheer, Michael
A1 Alidoust, Nasser
A1 Sete, Eyob A.
A1 Didier, Nicolas
A1 da Silva, Marcus P.
A1 Acala, Ezer
A1 Angeles, Joel
A1 Bestwick, Andrew
A1 Block, Maxwell
A1 Bloom, Benjamin
A1 Bradley, Adam
A1 Bui, Catvu
A1 Caldwell, Shane
A1 Capelluto, Lauren
A1 Chilcott, Rick
A1 Cordova, Jeff
A1 Crossman, Genya
A1 Curtis, Michael
A1 Deshpande, Saniya
A1 El Bouayadi, Tristan
A1 Girshovich, Daniel
A1 Hong, Sabrina
A1 Hudson, Alex
A1 Karalekas, Peter
A1 Kuang, Kat
A1 Lenihan, Michael
A1 Manenti, Riccardo
A1 Manning, Thomas
A1 Marshall, Jayss
A1 Mohan, Yuvraj
A1 O’Brien, William
A1 Otterbach, Johannes
A1 Papageorge, Alexander
A1 Paquette, Jean-Philip
A1 Pelstring, Michael
A1 Polloreno, Anthony
A1 Rawat, Vijay
A1 Ryan, Colm A.
A1 Renzas, Russ
A1 Rubin, Nick
A1 Russel, Damon
A1 Rust, Michael
A1 Scarabelli, Diego
A1 Selvanayagam, Michael
A1 Sinclair, Rodney
A1 Smith, Robert
A1 Suska, Mark
A1 To, Ting-Wai
A1 Vahidpour, Mehrnoosh
A1 Vodrahalli, Nagesh
A1 Whyland, Tyler
A1 Yadav, Kamal
A1 Zeng, William
A1 Rigetti, Chad T.
YR 2018
UL http://advances.sciencemag.org/content/4/2/eaao3603.abstract
AB We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk.