RT Journal Article SR Electronic T1 A physical model for efficient ranking in networks JF Science Advances JO Sci Adv FD American Association for the Advancement of Science SP eaar8260 DO 10.1126/sciadv.aar8260 VO 4 IS 7 A1 De Bacco, Caterina A1 Larremore, Daniel B. A1 Moore, Cristopher YR 2018 UL http://advances.sciencemag.org/content/4/7/eaar8260.abstract AB We present a physically inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that interactions are more likely to occur between individuals with similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or direction of edges. The ranking is obtained by solving a linear system of equations, which is sparse if the network is; thus, the resulting algorithm is extremely efficient and scalable. We illustrate these findings by analyzing real and synthetic data, including data sets from animal behavior, faculty hiring, social support networks, and sports tournaments. We show that our method often outperforms a variety of others, in both speed and accuracy, in recovering the underlying ranks and predicting edge directions.