RT Journal Article
SR Electronic
T1 Size-dependent influence of NO_{x} on the growth rates of organic aerosol particles
JF Science Advances
JO Sci Adv
FD American Association for the Advancement of Science
SP eaay4945
DO 10.1126/sciadv.aay4945
VO 6
IS 22
A1 Yan, C.
A1 Nie, W.
A1 Vogel, A. L.
A1 Dada, L.
A1 Lehtipalo, K.
A1 Stolzenburg, D.
A1 Wagner, R.
A1 Rissanen, M. P.
A1 Xiao, M.
A1 Ahonen, L.
A1 Fischer, L.
A1 Rose, C.
A1 Bianchi, F.
A1 Gordon, H.
A1 Simon, M.
A1 Heinritzi, M.
A1 Garmash, O.
A1 Roldin, P.
A1 Dias, A.
A1 Ye, P.
A1 Hofbauer, V.
A1 Amorim, A.
A1 Bauer, P. S.
A1 Bergen, A.
A1 Bernhammer, A.-K.
A1 Breitenlechner, M.
A1 Brilke, S.
A1 Buchholz, A.
A1 Mazon, S. Buenrostro
A1 Canagaratna, M. R.
A1 Chen, X.
A1 Ding, A.
A1 Dommen, J.
A1 Draper, D. C.
A1 Duplissy, J.
A1 Frege, C.
A1 Heyn, C.
A1 Guida, R.
A1 Hakala, J.
A1 Heikkinen, L.
A1 Hoyle, C. R.
A1 Jokinen, T.
A1 Kangasluoma, J.
A1 Kirkby, J.
A1 Kontkanen, J.
A1 Kürten, A.
A1 Lawler, M. J.
A1 Mai, H.
A1 Mathot, S.
A1 Mauldin, R. L.
A1 Molteni, U.
A1 Nichman, L.
A1 Nieminen, T.
A1 Nowak, J.
A1 Ojdanic, A.
A1 Onnela, A.
A1 Pajunoja, A.
A1 Petäjä, T.
A1 Piel, F.
A1 Quéléver, L. L. J.
A1 Sarnela, N.
A1 Schallhart, S.
A1 Sengupta, K.
A1 Sipilä, M.
A1 Tomé, A.
A1 Tröstl, J.
A1 Väisänen, O.
A1 Wagner, A. C.
A1 Ylisirniö, A.
A1 Zha, Q.
A1 Baltensperger, U.
A1 Carslaw, K. S.
A1 Curtius, J.
A1 Flagan, R. C.
A1 Hansel, A.
A1 Riipinen, I.
A1 Smith, J. N.
A1 Virtanen, A.
A1 Winkler, P. M.
A1 Donahue, N. M.
A1 Kerminen, V.-M.
A1 Kulmala, M.
A1 Ehn, M.
A1 Worsnop, D. R.
YR 2020
UL http://advances.sciencemag.org/content/6/22/eaay4945.abstract
AB Atmospheric new-particle formation (NPF) affects climate by contributing to a large fraction of the cloud condensation nuclei (CCN). Highly oxygenated organic molecules (HOMs) drive the early particle growth and therefore substantially influence the survival of newly formed particles to CCN. Nitrogen oxide (NOx) is known to suppress the NPF driven by HOMs, but the underlying mechanism remains largely unclear. Here, we examine the response of particle growth to the changes of HOM formation caused by NOx. We show that NOx suppresses particle growth in general, but the suppression is rather nonuniform and size dependent, which can be quantitatively explained by the shifted HOM volatility after adding NOx. By illustrating how NOx affects the early growth of new particles, a critical step of CCN formation, our results help provide a refined assessment of the potential climatic effects caused by the diverse changes of NOx level in forest regions around the globe.