Table 1 π-π stacking interactions in π-1.

Cg1, N1 → N2 → N3 → N4 → C8→; Cg2, N6 → C18 → C17 → C16 → C15 → C19→; Cg3, N8 → C30 → C29 → C28 → C27 → C31→; Cg4, C2 → C3 → C4 → C5 → C6 → C7→; Cg5, C12 → C13 → C14 → C15 → C19 → C20→; Cg6, C24 → C25 → C26 → C27 → C31 → C32→; Cg7, N5 → C9 → C10 → C11 → C12 → C13 → C14 → C15 → C19 → C20→; Cg8, N6 → C18 → C17 → C16 → C15 → C14 → C13 → C12 → C20 → C19→; Cg9, N7 → C21 → C22 → C23 → C24 → C25 → C26 → C27 → C31 → C32→; Cg10, N8 → C30 → C29 → C28 → C27 → C26 → C25 → C24 → C32 → C31→; Cg11, N5 → C9 → C10 → C11 → C12 → C13 → C14 → C15 → C16 → C17 → C18 → N6 → C19 → C20→; Cg12, N7 → C21 → C22 → C23 → C24 → C25 → C26 → C27 → C28 → C29 → C30 → N8 → C31 → C32→.

Entryπ-π interactionsCg-Cg (Å)*α (°)β (°)Cg-plane (Å)§Slippage (Å)||Symmetry operation on Cg
1Cg1-Cg33.621(6)0.0(5)22.93.335(3)1.410xy, −1 + x, 2 − z
2Cg1-Cg53.645(5)0.0(4)25.33.015(8)/3.295(3)1.5571/3 + y, 2/3 – x + y, 5/3 − z
3Cg1-Cg103.710(6)0.0(4)25.83.340(3)1.615xy, −1 + x, 2 − z
4Cg2-Cg53.475(5)0.6(4)8.83.434(3)0.5345/3 − x, 1/3 − y, 4/3 − z
5Cg2-Cg73.784(5)1.1(3)25.53.432(3)/3.415(3)1.6295/3 − x, 1/3 − y, 4/3 − z
6Cg2-Cg83.721(5)0.3(3)22.43.434(3)/3.440(2)1.4175/3 − x, 1/3 − y, 4/3 − z
7Cg2-Cg113.700(4)0.7(3)22.23.427(3)3.425(2)1.3995/3 − x, 1/3 − y, 4/3 − z
8Cg3-Cg63.753(7)1.4(6)24.43.388(5)/3.419(5)1.5475/3 − x, 1/3 − y, 7/3 − z
9Cg3-Cg93.866(6)2.2(5)29.03.373(5)/3.380(4)1.8775/3 − x, 1/3 − y, 7/3 − z
10Cg4-Cg63.920(6)0.0(5)24.93.557(3)1.648xy, −1 + x, 2 − z
11Cg4-Cg93.914(5)0.0(3)23.93.578(3)1.587xy, −1 + x, 2 − z
12Cg5-Cg23.476(5)0.6(4)8.93.434(3)0.5365/3 − x, 1/3 − y, 4/3 − z
13Cg5-Cg83.627(4)0.3(3)18.63.433(2)/3.438(2)1.1545/3 − x, 1/3 − y, 4/3 − z
14Cg6-Cg33.753(7)1.4(6)25.53.419(5)/3.387(5)1.6165/3 − x, 1/3 − y, 7/3 − z
15Cg6-Cg63.577(7)0.0(6)17.73.408(5)1.0875/3 − x, 1/3 − y, 7/3 − z
16Cg6-Cg103.465(6)0.6(5)11.53.398(5)/3.395(4)0.6895/3 − x, 1/3 − y, 7/3 − z
17Cg6-Cg123.674(6)0.6(5)22.93.397(5)/3.383(3)1.4315/3 − x, 1/3 − y, 7/3 − z
18Cg7-Cg23.784(5)1.1(3)24.93.416(3)/3.432(3)1.5945/3 − x, 1/3 − y, 4/3 − z
19Cg8-Cg23.721(5)0.3(3)22.73.441(2)/3.434(3)1.4335/3 − x, 1/3 − y, 4/3 − z
20Cg8-Cg53.627(4)0.3(3)18.83.438(2)/3.433(3)1.1695/3 − x, 1/3 − y, 4/3 − z
21Cg8-Cg83.476(4)0.0(2)9.03.433(2)0.5425/3 − x, 1/3 − y, 4/3 − z
22Cg8-Cg113.700(4)0.4(2)22.33.432(2)/3.423(2)1.4055/3 − x, 1/3 − y, 4/3 − z
23Cg9-Cg33.866(6)2.2(5)29.23.380(4)/3.373(5)1.8895/3 − x, 1/3 − y, 7/3 − z
24Cg9-Cg103.768(5)1.4(4)25.73.369(4)/3.394(4)1.6375/3 − x, 1/3 − y, 7/3 − z
25Cg10-Cg63.464(6)0.6(5)11.33.395(4)/3.397(5)0.6785/3 − x, 1/3 − y, 7/3 − z
26Cg10-Cg93.768(5)1.4(4)26.63.394(4)/3.369(4)1.6895/3 − x, 1/3 − y, 7/3 − z
27Cg10-Cg103.749(5)0.0(4)25.13.396(4)/3.396(4)1.5885/3 − x, 1/3 − y, 7/3 − z
28Cg10-Cg123.714(5)0.8(3)24.73.386(4)/3.376(3)1.5495/3 − x, 1/3 − y, 7/3 − z
29Cg11-Cg23.701(4)0.7(3)22.23.426(2)/3.427(3)1.3965/3 − x, 1/3 − y, 4/3 − z
30Cg11-Cg83.700(4)0.4(2)22.03.423(2)/3.432(2)1.3835/3 − x, 1/3 − y, 4/3 − z
31Cg12-Cg63.673(6)0.6(5)22.43.383(3)/3.396(5)1.3985/3 − x, 1/3 − y, 7/3 − z
32Cg12-Cg103.714(5)0.8(3)24.33.376(3)/3.386(4)1.5275/3 − x, 1/3 − y, 7/3 − z
33Cg12-Cg123.965(4)0.0(2)31.53.380(3)/3.381(3)2.0725/3 − x, 1/3 − y, 7/3 − z

*Distance between ring centroids.

†Dihedral angle between planes I and J.

‡Angle between Cg(I)-Cg(J) vector and normal to plane I.

§Perpendicular distance of Cg(I) on ring J.

||Distance between Cg(I) and perpendicular projection of Cg(J) on ring I.