From valley/sublattice to Chern/pseudospin | ||

(τ, σ) → (γ, η) | ||

γ = (γ, γ_{x}, γ_{y}) = (σ_{z}, σ_{x}τ_{y}, σ_{z}τ_{z})_{z} | ||

η = (η, η_{x}, η_{y}) = (σ_{z}τ_{x}, σ_{x}τ_{x}, τ_{y})_{z} | ||

Basis | ||

Valley | τ = _{z}K/K^{′} | |

Sublattice | σ = _{z}A/B | |

Chern sector | γ = σ_{z}τ_{z} = + /−_{z} | |

Pseudospin | η = τ_{z} = ↑_{z}_{ps}/↓_{ps} | |

Symmetries | ||

Symm | (τ, σ) basis | (γ, η) basis |

T | τK_{x} | γη_{x}K_{x} |

C_{2} | στ_{x}_{x} | η_{x} |

U(1)_{V} | e^{iϕτz} | e^{iϕηz} |